The following note has just been sent to Retraction watch and forwarded to Archives of Virology, University, Funding Agency and news outlet, as it appears that even after 3 retracted articles and 1 Expression of Concern, the Brazilian researcher Cardoso T. has just published another article in Archives of Virology with recycled data. It’s not reasonable that this person continues to be allowed to publish. She has tricked journals, Universities and funding agencies and no one seems to be able to stop her. This time, cells initially attributed to the bovine species (Fig 4C in https://doi.org/10.1186/1472-6750-12-18) are now MSC cells from ducks (Fig 1A, bottom right panel in https://doi.org/10.1007/s00705-021-05120-z), in yet another miraculous species transformation. Please find the first “chimera” commented in this piece by the Retraction Watch team: https://retractionwatch.com/2019/07/25/cock-and-bull-story-leads-to-retraction-of-bovine-hersesvirus-paper/

And the chimera pointed out on the link above is even more complex: it also includes the dog (ref #2 in https://link.springer.com/article/10.1007/s00705-020-04571-0). There are multiple articles from this person that share identical figures/tables. One does not have to look hard to find... and no one does anything, she continues to publish and tarnish science.

Impunity leads to repeat offenders: apparently this professor continues to produce “high quality” science. After 3 retracted articles and 1 Expression of Concern, the group (though much reduced) has just published another article with recycled data, as mentioned earlier.

On the next pages, please find attached figures (same color rectangles are similar images in different places – article or figure repeated within the same article), and a table with samples of her “work”.

3 Retractions (to date) and 1 Expression of Concern:


strongly suggest virus replication (10). Astroglial cells were the most abundant cell type in the infected brain; however, our knowledge about their function in MCF disease remains limited (14). In fact, astrocytes are suspected of being involved in a wide range of neuropathologies associated with the degeneration process. In this sense, astrocytes express the intermediate filaments called glial fibrillary acidic proteins (GFAP), which were first isolated from brain lesions of patients with multiple sclerosis (15). As shown by immunohistochemistry, the majority of glial cells were surrounding the vasculitic areas that were expressing GFAP (Figure 2 – B). The emerging picture is highly interesting and it suggests that GFAP could be a structure of great importance in the neuropathogenesis of MCF lesions, a phenomenon that should be investigated in future experiments.

Veterinary Microbiology 229 (2019) 153-158

Fig. 5. Distribution of neutrophil elastase (blue) and DNA (red) in smears of mouse lung tissue stained with alcian blue or alcian blue/periodic acid-Schiff. The percentage of neutrophils and DNA staining was determined by counting at least 100 cells in each group.

Fig. 6. Acute phase response (APR) of human neutrophils treated with ETX. The APR was assessed by measuring the production of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α). The data are presented as mean ± SD.


Cell Tissue Res

Fig. 8. Flow cytometry analysis of WBCs surface markers. The data are presented as mean ± SD. a) CD45-; b) CD34+; c) CD105+; d) CD73+; e) CD90+; f) CD29+.

Fig. 9. Flow cytometry analysis of WBCs surface markers. The data are presented as mean ± SD. a) CD45-; b) CD34+; c) CD73+; d) CD90+; e) CD29+; f) CD105+.

Cell Tissue Res

DOI 10.1007/s00441-016-2504-9
Archives of Virology volume 166, 2285–2289 (2021)

Fig. 1

From: Upregulation of INF-γ, IL-6, and IL-8 expression during replication of turkey coronavirus

Representative photomicrographs of mesoderm-like tissues. a) Undifferentiated poults. MSCs. Chondrogenesis and acidic proteoglycans are visualized by safranin O staining, and osteogenesis and calcium mineralization deposits are visualized by Alizarin red staining. Adipogenesis differentiation showing lipid droplets stained with oil red; magnification of 400 µm. b) Flow cytometry analysis showing negative staining for cytokeratin and positive staining for vimentin, CD44, CD90, and CD105. The flow cytometry results are expressed as box plots and whisker plots. This one plots the box from the 10th percentile to the 90th percentile, red dots showing points outside that range.
<table>
<thead>
<tr>
<th>Figure</th>
<th>doi</th>
<th>Figure</th>
<th>doi</th>
<th>Figure</th>
<th>doi</th>
<th>Figure</th>
<th>doi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 2A</td>
<td>doi:10.1016/j.cjpa.2009.12.012</td>
<td>Fig 1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 4A</td>
<td>DOI 10.1007/s00441-016-2504-9</td>
<td>Fig 4F</td>
<td>10.1186/1472-6750-12-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 4B</td>
<td>DOI 10.1007/s00441-016-2504-9</td>
<td>Fig 4A</td>
<td>10.1186/1472-6750-12-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 4E</td>
<td>DOI 10.1007/s00441-016-2504-9</td>
<td>Fig 4D</td>
<td>10.1186/1472-6750-12-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 1C</td>
<td>DOI 10.1016/j.tvjl.2016.11.014</td>
<td>Fig 2A</td>
<td>10.1590/51678-9199/201005000012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 6A</td>
<td>DOI 10.1007/s00441-016-2504-9</td>
<td>Fig 7B</td>
<td>DOI 10.1007/s00441-016-2504-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 6B</td>
<td>DOI 10.1007/s00441-016-2504-9</td>
<td>Fig 7A e Fig 8B</td>
<td>DOI 10.1007/s00441-016-2504-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 4A (1h)</td>
<td>DOI 10.1016/j.anerobe.2013.09.009</td>
<td>Fig 1C (monocytes)</td>
<td>10.1016/j.vetmic.2019.01.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 4B (2-3h)</td>
<td>DOI 10.1016/j.anerobe.2013.09.009</td>
<td>Fig 4C (4h)</td>
<td>10.1016/j.anerobe.2013.09.009</td>
<td></td>
<td>Fig 1C (mc.-der. macroph.)</td>
<td>10.1016/j.vetmic.2019.01.004</td>
<td>Fig 6C (SV5b/90)</td>
</tr>
<tr>
<td>Fig 4D</td>
<td>DOI 10.1016/j.anerobe.2013.09.009</td>
<td>Fig 6B (Los Angeles)</td>
<td>DOI 10.1007/s00705-015-2537-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 3f (BAX 4-5h)</td>
<td>DOI 10.1016/j.anerobe.2013.09.009</td>
<td>Fig 6F (Control)</td>
<td>DOI 10.1007/s00705-015-2537-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 2B (Control 72h)</td>
<td>DOI 10.1007/s00705-018-3704-2</td>
<td>Fig 2B (8B 24h)</td>
<td>DOI 10.1007/s00705-018-3704-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 2B (8B 72h)</td>
<td>DOI 10.1007/s00705-018-3704-2</td>
<td>Fig 1B</td>
<td>10.1016/j.vetmic.2019.01.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 1A (control 24h)</td>
<td>DOI 10.1007/s00705-018-3704-2</td>
<td>Fig 1A</td>
<td>10.1016/j.vetmic.2019.01.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 1D</td>
<td>DOI 10.1007/s00705-018-3704-2</td>
<td>Fig 1H</td>
<td>10.1016/j.vetmic.2019.01.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 1A (control 48h)</td>
<td>DOI 10.1007/s00705-018-3704-2</td>
<td>Fig 1A (control 72h)</td>
<td>DOI 10.1007/s00705-018-3704-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 1 (control Lederle AND Snyder Hill)</td>
<td>DOI 10.1111/vec.12168</td>
<td>Table 1 (control)</td>
<td>DOI 10.1016/j.vetmic.2019.01.004</td>
<td>Table 1 (control values)</td>
<td>DOI 10.1007/s00705-018-3704-2</td>
<td>Table 1 (control)</td>
<td>DOI 10.1007/s00705-015-2537-5</td>
</tr>
<tr>
<td>Table 1 (Lederle Staussp. AND Snyder AF-72)</td>
<td>DOI 10.1111/vec.12168</td>
<td>Table 1 (Staussp.)</td>
<td>DOI 10.1016/j.vetmic.2019.01.004</td>
<td>Table 1 (Staussp. values)</td>
<td>DOI 10.1007/s00705-018-3704-2</td>
<td>Table 1 (Staussp.)</td>
<td>DOI 10.1007/s00705-015-2537-5</td>
</tr>
<tr>
<td>Table 1 (Lederle AF-72)</td>
<td>DOI 10.1111/vec.12168</td>
<td>Table 1 (SV/S07/99)</td>
<td>DOI 10.1007/s00705-015-2537-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 1 (24h)</td>
<td>DOI 10.1007/s00705-018-3704-2</td>
<td>Table 1 (Cooper)</td>
<td>DOI 10.1007/s00705-015-2537-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 1 (72h)</td>
<td>DOI 10.1007/s00705-018-3704-2</td>
<td>Table 1 (SVS6/90)</td>
<td>DOI 10.1007/s00705-015-2537-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 1A, bottom right panel</td>
<td>DOI 10.1007/s00705-021-05120-z</td>
<td>Fig 4C</td>
<td>10.1186/1472-6750-12-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>