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MicroRNAs [1] have emerged as key post-transcriptional regulators of gene expression, involved in
various physiological and pathological processes. It was found that several miRNAs are directly
involved in human cancers, including lung, breast, brain, liver, colon cancer and leukemia. In addi-
tion, some miRNAs may function as oncogenes or tumor suppressors in tumor development. Fur-
thermore, a widespread down-regulation of miRNAs is commonly observed in human calicers and
promotes cellular transformation and tumorigenesis [2-5]. More than 50% of miRNA genes are
located in cancer-associated genomic regions or in fragile sites, frequently amplified or deleted in
human cancer, suggesting an important role in malignant transformation. A better understanding
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ﬁﬂ?&k of the miRNA regulation and misexpression in cancer may ultimately yield further insight into
Epigenetics the molecular mechanisms of tumorigenesis and new therapeutic strategies may arise against can-
DNA methylation cer. Here, we discuss the occurrence of the deregulated expression of miRNAs in human cancers and
Cancer their importance in the tumorigenic process.

© 2010 Federation of European Biochemical Societies. Published by Elsevier B.V.
Open access under CC BY-NC-ND license.

1. Introduction

For the past two and a half decades it has been thought that
cancer is caused by genetic and/or epigenetic alterations to onco-
genes or tumor-suppressor genes. Various regulatory factors con-
trol the expression of these genes, allowing for the correct
execution of processes such as division, differentiation, and apop-
tosis. In cancer, however, a deregulation of these genes causes
these processes to become uncontrolled, resulting in tumor forma-
tion. Recent research has unraveled molecular mechanisms and
damaged genes involved in cancer. One such example is the dis-
covery of microRNAs [6], that ended up in a escalation in research
on these RNA molecules as key players in cancer biology. Smaller
than protein-coding genes, miRNAs can regulate the translation
of hundreds of genes through sequence-specific binding to mRNA
[7], and depending on the degree of complementarity will result
in the inhibition (‘translation and/or enhanced mRNA decay
[7,8]. In mammals, MiRNAs are predicted to control the activity
of more than 60% of all protein-coding genes [9] and participate
in the regulation of almost every cellular process investigated to
date (reviewed in References [10-12]).
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In 1998, Fire and Mello established dsRNA as the silencing trigger
in Caenorhabditis elegans [13]. The first miRNA to be discovered, lin-
4, was identified in C elegans in a screen for genes that are required
forpost-embryonic development [14]. The lin-4 locus produces a 22
nucleotide RNA thatis partially complementary to sequences in the

UTR of its regulatory target, the lin-14 mRNA [15]. Structurally

iRNAs are small non-coding regulatory RNAs ranging in size from
19 to 24 nucleotides (see miRBase, http://microrna.sanger.ac.uk/),
that potentially target up to one-third of human coding genes mak-
ing their role in cellular biology @en more apparent [16]. These
small RNAs post-transcriptionallyfepress gene expression by recog-
nizing complementary target sites most often in the 3’ untranslated
region (UTR) of target messenger RNAs (mRNAs) [17-19]. However,
animal miRNAs may also target 5'UTR and coding regions of mRNAs,
as documented by experiments involving both artificial and natural
mRNAs and also by bioinformatic predictions [20-22]. MicroRNAs
silence the expression of the target mRNAs, either by mRNA cleavage
orby translationrepression. Nevertheless, it has been described that
miRNAs can also increase the expression of a target mRNA [23]. Each
miRNA maytarget several different mRNAs and, conversely, a single
mRNA can be targeted by several miRNAs. Furthermore, it was
shown that miRNAs can target not only messenger RNA but also
DNA; MiR-373 was found to target promoter sequences and induce
gene expression [24]. More recently it was described that miRNAs
can also target proteins. Eiring et al. reported a novel function of
miRNAs called “decoy activity”. MiR-328 interacts with a heteroge-
neous ribonucleoprotein, hnRNP-E2, to regulate RNA-binding pro-
tein function [25].
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In this review, we briefly describe miRNA biogenesis and regu-
lation of miRNAs at transcriptional and post-transcriptional levels.
Then we focus on miRNAs deregulation in cancers by outlining
their roles as oncogenes or tumor-suppressors, their control of
multiple cancer-related biological pathways and their epigenetic
transcriptional control in human cancers. Finally, we finish this re-
view with a discussion of the potential application of miRNAs as
biomarkers, diagnosis, and potential therapeutic tools for human
cancers.

2. Biogenesis and maturation of microRNAs

!logenesis of a miRNA begins with the synthesis by Pol Il of a
long transcript known as pri-miRNA (Fig. 1). Also Pol Il was ini-
tially believed to mediate the transcription of miRNAs because it
produces some of the other shorter non-coding RNAs: tRNAs, 55
ribosomal RNA and U6 snRNA. Several evidences seem to indicate
that pri-88RNAs with their own promoters must be Pol Il products
[26-30]. However, other pathways generate a minor set of miRNAs,
especially from genomic repeats. For example, RNA polymerase III
is responsible for transcription of miRNAs in Alu repeats [31].

The first step of miRNA maturation is enzymatic cleavage by the
RNase Il Drosha which releases a small hairpin that is termed a
pre-nfllRNA of ~70 nucleotides. The RNase Drosha works together
with 1s interacting partner DGCR8 (DiGeorge syndrome critical
region gene 8) [32-34]. Drosha belongs to a family of double

randed RNA specific ribonucleases. The dsRNA-binding protein

GCR8 recognizes the stem and the flanking single-stranded RNA
(ssRNA) and serves as a ruler for Drosha to cut the stem releasing
the hairpin pre-miRNA [35]. Interestingly, the DGCR8 gene is one
of the few genes located in a region (chromosome 22) deleted in
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a genetic disease termed DiGeorge syndrome [34]. This pri-miRNA
processing complex of Drosha and DGCRS is called the Micropro-
cessor [33,34]. Pre-miRNAs have a two-nucleotide overhang at
their 3’ ends and a 5’ phosphate group, which are indicative of their
production by an RNase Il [32,36]. All the components of this
microprocessor are needed for pri-miRNA processing in vivo, as a
reduction on the level of either Drosha or DGCR8 by RNAI led to
the reduction of both pre-miRNAs and mature miRNAs [33,34]. A
few pre-miRNAs are produced by the nuclear pre-mRNA splicing
pathway instead of through processing by Drosha. These pre-miR-
NA-like introns, termed mirtons, are spliced out of mRNA precur-
sors. This class of miRNAs bypass Drosha requirement by taking
an alternative biogenesis pathway [37-39].

The nuclear export protein Exportin 5 carries the pre-miRNA to
the cytoplasm bound to Ran, a GTPase that moves RNA and pro-
teins through the nuclear pore [40,41]. Yi et al. (2003) demon-
strated that the nuclear export is dependent on the exportin-5
nuclear export factor which is a member of the karyopherin family
of nucleocytoplasmic transport factors. As with other nuclear
transport receptors, XPO5 binds cooperatively to its cargo and
the GTP-bound form of the cofactor Ran in the nucleus, and re-
leases the cargo following the hydrolysis of GTP in the cytoplasm
(Fig. 1) [ 1]. Pre-miRNAs transported to the cytoplasm are sub-
sequently converted to mature duplex miRNA by another RNase I1I
enzyme, DICER1 [42]. DICERT1 is a highly conserved protein with
one homologue in the yeast Schizosaccharomyces pombe (Dcr),
one in human, one in nematode worm (DCR-1), two in Drosophila
(DCR-1 and DCR-2), and four in Arabidopsis (DCL1, DCL2, DCL3,
DCL4; [43,44)]. Dicer cleavage generates a duplex containing two
strands, termed miRNA and mlRNA corresponding to the two
sides of the base of the stem [45,46]. DICER1 knock-out (Dcr/-)
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Fig. 1. Depiction of the microRNA processing machinery.
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mice and cells are not viable, indicating a major role for this pro-
tein during development and normal cell function [47]. In human
cells, the dsRBP that associates with DICER1 is the Trans-activator
RNA (tar)-binding protein, TRBP. This protein is required for RNAI
function mediated by both siRNAs and miRNAs [48-50], where it
acts as a biosensor selecting the dsRNA to be loaded into the RISC
[51,52].

Following DICER1/TRBP cleavage, the resulting ~22-nt RNA du-
plex is loaded onto an Ago protein so as to generate the effector
complex, RISC [48]. One strand of the ~22-nt duplex remains in
Ago as a mature miRNA (the guide strand or miRNA), whereas
the other strand (the passenger strand or miRNA') is degraded.
Nucleotides 2-7 of the mature miRNA sequence create the “seed
region” [53-56] that primarily specifies the target mRNA that the
miRNA will bind to.

Although it has been recognized and predicted before that
genes can be targeted by multiple miRNAs [57,58], this problem
has not be tackled experimentally. A new study by Wu et al.
(2010) represents the first defined example wherein multiple miR-
NAs target the same gene [59]. In this study, Wu et al. experimen-
tally demonstrate through a high-throughput luciferase reporter
screen that p21Cip1/Waf1 can be directly targeted by nearly 28
microRNAs (miRNAs).

3. Transcription and post-transcriptional regulation
of microRNAs

Transcription is a major point of regulation in miRNA biogene-
sis. Almost 50% of miRNA genes are located in the introns of pro-
tein-coding genes or long non-coding RNAs transcripts, whereas
the remainder are independent transcription units with specific
core promoter elements and polyadenylation signals reviewed in
[60]. Approximately 50% of mammalian microRNA loci are in close
proximity with other miRNAs. These clustered miRNAs are tran-
scribed as polycistronic messages in single transcript units or are
overlapped in the host transcripts, within exons or introns,
depending on the splicing patterns of the host gene. Numerous
Pol Il-associated transcription factors are involved in transcrip-
tional control of miRNA genes. For instance, myogenic transcrip-
tion factors, such as myogenin and myoblast determination 1
(MYOD1), bind upstream of miR-1 and miR-133 loci and induce
the transcription of these miRNAs during myogenesis [61-63]. An-
other clear example is the activation of miRNAs transcription by
the tumor suppressor p53. P53 activates the miR-34 family of miR-
NAs, whereas the oncogenic protein MYC transactivates or re-
presses a number of miRNAs that are involved in the cell cycle
and apoptosis [4,64). Epigenetic control also contributes to miRNA
gene regulation [65-67].

Drosha processing constitutes another important point of regu-
lation. It was proposed that SMAD proteins activated by BMP/TGF
interact with Drosha and DDXS5 (also known as p68) to stimulate
Drosha processing, although the detailed mechanism for this re-
mains unclear [68]. Drosha processing of pri-miR-18a is dependent
on the heterogeneous ribonucleoprotein particle A1 [69]. The num-
ber of these regulatory factors is unknown, but it is plausible that
nuclear RNA-binding proteins influence miRNA processing through
specific interactions with a subset of pri-miRNAs.

The let-7 miRNAs also show interesting expression patterns
[70]. The primary transcript of let-7 (pri-let-7) is expressed in both
undifferentiated and differentiated ES cells, whereas mature let-7
is detected only in differentiated cells, indicating that let-7a might
be post-transcriptionally controlled [71]. Similar post-transcrip-
tional inhibition of let-7 also takes place in tumor cells [72]. Recent
studies have shown that an RNA-binding protein, LIN28, is respon-
sible for the suppression of let-7 processing [73-75]. Several differ-

ent mechanisms of LIN28 activation have been proposed: blockage
of Drosha processing [73], interference with DICER1 processing
[75], and terminal uridylation of pre-let-7. Given the cytoplasmic
localization of LIN28, and its strong interaction with pre-let-7
(but not with pri-let-7), LIN28 is likely to function mainly in the
cytoplasm by interfering with pre-let-7 processing and/or by
inducing terminal uridylation of pre-let-7. The U tail that is added
to the 3’ end of pre-let-7 blocks DICER1 processing and facilitates
the decay of pre-let-7.

Turnover of miRNAs is a largely unexplored area. RNA decay en-
zymes might target not only mature miRNAs but also the precur-
sors (pri-miRNAs and pre-miRNAs). Once bound to Ago proteins,
mature miRNAs seem to be more stable than average mRNAs;
the half-life of most miRNAs is greater than 14 h [76].

RNA editing is another possible way of regulating miRNA bio-
genesis [77,78]. The alteration of adenine to inosines, a reaction
that is mediated by adenine deaminases (ADARs), has been ob-
served in miR-142 and miR-151 [79,80]. Because the modified
pri-miRNAs or pre-miRNAs become poor substrates of RNase Il
proteins, editing of the precursor can interfere with miRNA pro-
cessing. Editing can also change the target specificity of the miRNA
if it occurs in miRNA sequences [80].

An increasing number of miRNAs are controlled at the
post-transcriptional level [77]. MiR-138 is specifically expressed
in neuronal cells, while its expression is suppressed at the DICER1
processing step in non-neuronal cells [81]. Human miR-31,
miR-128 and miR-105, however, might be controlled at the nuclear
export step because the precursors are retained in the nucleus
without producing mature miRNA in certain cell types. Mature
miR-7, miR-143 and miR-145 show reduced expression in cancer
cells compared with normal tissue, although the precursor levels
are similar between the tumor and normal tissues, which suggests
that post-transcriptional deregulation occurs in cancer cells.
Thomson et al. (2006), has described the lack of correlation be-
tween pri-miRNA and mature expression in the tumor samples,
while the normal tissue samples had positive correlation. This
demonstrates that the miRNA alterations that occur in tumors
are not due to deregulated transcription but can be, in part, due
to post-transcriptional regulation of miRNAs [72]. This data sug-
gest a multistep model for the control of miRNA expression. Tran-
scription of the pri-miRNA can be regulated, as has been
demonstrated for tissue-specific miRNAs [61,82-84|. Processing
at the Dicer step can be delayed or inhibited [42,81].

All together, these observations indicate that the miRNAs can be
regulated at various levels, from stability, processing, sequence
identity and binding to target mRNAs. Therefore, these regulatory
pathways are susceptible of being altered in cancer cells.

4. MicroRNA deregulation in cancer

Like transcription factors, miRNAs regulate diverse cellular
pathways and are widely believed to regulate most biological pro-
cesses. Recent studies have reported the involvement of both ge-
netic and epigenetic mechanisms in miRNA deregulation that can
potentially lead to cancer development [85]. Genetic mechanisms
are usually chromosomal abnormalities that can lead to the dele-
tion, amplification, or translocation of miRNAs. In addition, approx-
imately 50% of all annotated human miRNA genes are located at
fragile sites or areas of the genome that are associated with cancer
which are prone to breakage and rearrangement in cancer cells
|86-88]. For example, miR-15a and miR-16-1, two tumor-suppres-
sor microRNAs, are severely down-regulated in 70% of patients
with chronic lymphocytic leukemia (CLL) due to chromosomal
deletions or mutations at the 13q13.4 loci where they are situated
[86].
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In addition to genomic and epigenetic alterations [87,89,90],
miRNA deregulation in cancer might be attributable to the impair-
ment of microRNA-processing steps [5,72,91,92], like the described
mutations in the TARBP2 gene that lead to DICER1 destabilization
and therefore to a global down-regulation of miRNAs [5]. In accor-
dance with these results a widespread decrease in mature miRNAs
is often observed in various human malignancies [2,89,93,94|.
From these observations a new pathway could be emerging for
colorectal tumorigenesis, in addition to the classical mutator or
chromosomal instable (CIN) categories, standing for a subset of
microsatellite instable colorectal tumors bearing mutations in the
microRNA machinery genes - mutated microRNA machinery pheno-
type (MMMP). This molecular subgroup of tumors claims to group
up colorectal cancers with MSI and is characterized for exhibiting
concordant tumor-specific gene mutations in microRNA machinery
genes, in this way deregulating the cells miRNAome. Even though
larger prospective studies will be required to fully characterize and
validate this feature as a classificatory criterion, the conductive
molecular events have been functionally characterized, and it is
likely that patients suffering from this mutated microRNA machin-
ery phenotype (MMMP) subset of colorectal tumors would benefit
fro, a broader miRNAome modifying approach.

ranscription factors mayinduce miRNAs by activating the
transcription of pri-miRNAs. Given the wide impact of transcrip-
tion factors on fundamental cellular processes, it is not surprising
that !any oncogenes or tumor suppressors function as transcrip-
tion Tactors. Many miRNA-transcription factor connections have
been discovered in cancer [95]. P53, c-Myc and E2F are further dis-
cugsed below.

e steady-state level of mature miRNA is determined not only
by the transcription rate of the pri-miRNA but also by the processing
efficiency of its precursors and by its stability. MiRNAs often exhibit
adiscrepancy inexpression of the mature form, relative to that of the
precursor [81,96-100]. Although miRNAs in a genomic cluster are
usually expressed from a common pri-miRNA, the levels of indivi
ual miRNAs in the cluster are not necessarily the same [101,102].
time-course experiment, after induction of pri-miR-21, revealed de-
layed kinetics inaccumulation of mature miR-21[103]. Collectively,
these observations indicate that miRNA processing and stability are
import@Bt factors that determine miRNA expression level.

The expression levels of DICER1 or Drosha are altered ina num-
ber of cancers [3104-107]. Drosha up-regulation is seen in more
than half of cervical squamous cell carcinoma (SCC) specimens,
and is likely due to the copy number gain at chromosome 5p,
where the Drosha gene is located [106]. Hierarchical clustering of
miRNA expression data successfully classified cervical SCC samples
into two groups according to Drosha overexpression. Notably, some
miRNAs were reduced upon Drosha overexpression, indicating that
individual miRNAs respond differently to an overexpression of the
miRNA processing machinery. Interestingly, Drosha was reported
to interact with an oncogenic fusion protein derived from a chro-
mosomal translocation in some leukemias [108]. This interaction
affects pri-miRNA selection of Drosha and, as a result, influences
miRNA expression patterns. Moreover, frequent hemizygous dele-
tion of DICER1 occurs with a high incidence rate in breast tumors
[109].

Findings from two mouse models strongly suggest that altera-
tions in miRNA expression alone can cause a cell to become neo-
plastic. The miR-155 developed acute lymphoblastic/high-grade
lymphoma [110], while the knock-out model of the tumor-sup-
pressor cluster miR-15/16 developed chronic lymphocytic leuke-
mia [111].

Recognition of miRNAs that are differentially expressed be-
tween tumor tissues and normal tissues may help to identify those
miRNAs that are involved in human cancers and further establish
the key role of miRNAs in the tumorigenic process.

5. Epigenetic control of microRNAs expression

Three main epigenetic events regulate tumor-associated genes:
the aberrant hypermethylation of tumor suppressor genes, global
DNA hypomethylation and post-translational modifications of his-
tones [67,112-114]. An extensive analysis of genomic sequences of
microRNA genes has shown that approximately half of them are
associated with CpG islands [115,116]. Théi¢fore these epigenetic
events can also affect miRNA expression. In addition, some miRNAs
are up-regulated (a) upon the exposure of cells to the agent 5-aza-
2'-deoxycytidine [116], (b) upon mutation of methyltransferases
(DNMTSs)[90], or (c) upon histone deacetylase inhibitor treatment
[117]. These studies have identified some miRNAs that are re-
pressed by CpG island hypermethylation in cancers relative to nor-
mal tissue. Representative examples include miR-9-1 in breast
cancer [116] and miR-124a in colorectal tumors [90]. The miR-
203 locus also frequently undergoes DNA methylation irg's-cell
lymphoma but not in normal T lymphocytes [118]. In the Case of
miR-124a, hypermethylation is tumor type specific, as no methyl-
ation is seen in neuroblastoma. Moreover, epigenetic silencing of a
miRNA may be a reflection of tissue specificity. For example,
miR-124a is normally highly expressed in neuronal tissues, so its
epigenetic repression in colorectal tumors is not surprising [90].
Saito and colleagues have shown that DNA methylation status
and chromatin structure around miRNA genes differ between blad-
der cancer cells and normal human fibroblasts [119]. They further
demonstrate that inhibition of DNA methylation and histone
deacetylation induce the expression of miR-127 only in cancer cells
[119]. The methylation of miR-127 and miR-124a genes influences
the expression of two oncogenic proteins (BCL6 and CDKB6, respec-
tively), which are not normally regulated by methylation.

Epigenetic silencing of several miRNAs is a frequent and early
event in breast cancer [116,120], and although the let-7 family is
globally down-regulated in lung cancer [121,122] there is evidence
of let-7a-3 hypomethylation [123]; this is perhaps another exam-
ple of how miRNAs cdll have bivalent roles in malignancy.

MiRNAs can also counteract CpG methylation. For example,
miR-29 directly targets DNMT-3A and -3B [124]. In agreement
with this observation, ectopic expression of miR-29 results in a
global reduction of DNA methylation, subsequently leading to a
depression of tumor-suppressor genes that had been silenced by
promoter methylation in cancer cells [124].

In conclusion, epigenetic changes complemented by genetic
inactivation due to mutation or deletion are also a possible mech-
anism that partially account for miRNA deregulation in cancer
cells.

6. Consequences of aberrant microRNA expression in cancers

we compare global gene expression profiles in cancer and
normal tissues, we find that many miRNAs and mRNAs are dereg-
ulated. Therefore, it is plausible that tumorigenesis and/or malig-
nant progression results from changes in the entire miRNAome,
rather than from the change of a single miRNA that regulates an
oncogenic (@ tumor-suppressive) target gene.

MiRNAs Tegulate the expression of their targets, so over- or
underexpression of miRNAs is expected to result in down- or up
regulation, respectively, of the protein product of the target
mRM#s. It is not difficult to associate a miRNA with cancer if a di-
rect target of a miRNA is an oncogene or a tumor-suppressor gene.
For example, mir-15 and miR-16 are severely down-regulated in
70% of patients with chronic lymphocytic leukemia (CLL) and in-
duce apoptosis by targeting antiapoptotic gene B cell lymphoma
2 (BCL2) mRNA [125], which is a key player in many types of hu-
man cancers including leukemias, lymphomas, and carcinomas
[126]. Moreover, emerging evidence suggests that miRNA let-7
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may play a critical role in lung cancer development. Takamizawa
et al. (2004) observed that the expression levels of let-7 were fre-
quently reduced in both in vitro and in vivo lung cancer studies; re-
duced let-7 expression was significantly associated with shortened
postoperative survival, independently of disease state [121]. John-
son etal. (2005) also showed that lung tumor tissues display signif-
icantly reduced levels of let-7 and significantly increased levels of
RAS protein relative to normal lung tissue, suggesting let-7 regula-
tion of RAS as a mechanism for lung oncogenesis. Since the demon-
stratiorffhat let-7 miRNA directly regulates RAS and MYC oncogenes
[127] aTlumber of other miRNA target pairs have been studied.

Breast cancer also presents a deregulated pattern of expression
of miRNAs between normal and neoplastic breast tissues. lorio
et al. (2005) found miR-125b, miR-145, miR-21 and miR-155 were
significantly reduced in breast cancer tissues. Most importantly,
they also observed that expression patterns of miRNAs were corre-
lated with tumor stage, proliferation index, estrogen and proges-
terone receptor expression and vascular invasion [128]. The
differentiation program epithelial to mesenchymal transition
(EMT) involves changes in a number of miRNAs. Some of these
miRNAs have been shown to control cellular plasticity through
the suppression of EMT-inducers or to influence cellular phenotype
through the suppression of genes involved in defining the epithe-
lial and mesenchymal cell states. MiR-200 family of miRNAs are
profoundly involved in this process and are deregulated in breast
cancers [129]. Also miR-10b is highly expressed in metastatic
breast cancer cells and positively regulates cell migration and inva-
sion [130].

Colorectal neoplasia is also characterized by alterations in miR-
NAs expression. MiR-145 and miR-143 are frequently reduced at
the adenomatous and cancer stages of colorectal neoplasia [100].
However, it was also described that the levels of pre-miR-143
and pre-miR-145 are not altered in precancerous and neoplastic
colorectal tissue, suggesting that post-transcriptional control is
the cause for the reduced mature miRNA levels [100].

A reduced expression of miR-26a is observed in hepatocellular
carcinoma (HCC) cells, a miRNA that is normally expressed at high
levels in diverse tissues. Expression of this miRNA in liver cancer
cells in vitro induces cell cycle arrest associated with direct target-
ing of cyclins D1 and D2. The administration of miR-26a in a mouse
model of HCC results in inhibition of cancer cell proliferation,
induction of tumor-specific apoptosis, and dramatic protection
from disease progression [131]. In a recent cohort study published
by Ji et al. (2009) tumors had reduced levels of miR-26 expression,
as compared with paired non-cancerous tissues, which indicated
that the level of miR-26 expression was also associated with hepa-
tocellular carcinoma. Furthermore patients whose tumors had low
miR-26 expression had shorter overall survival but a better re-
sponse to interferon therapy than did patients whose tumors had
high expression of the microRNA [132].

In human testicular germ cell tumors two miRNAs were re-
ported to be oncogenic, miR-372 and miR-373 [133]. miR-372
and miR-373 inhibit p53-mediated CDK inhibition through direct
inhibition of the Large Tumor Suppressor Homolog 2 (LATS2),
and permitted the proliferation and tumorigenesis of primary hu-
man cells which have both oncogenic RAS and active wild-type
p53 [133].

As mentioned before, in several types of lymphomas, including
Burkitt's lymphoma, the expression of miR-155 is increased
compared to normal cells [134]. Mir-155 is located in the
conserved region of the BIC gene and expression of BIC/miR-155 is

evated in Hodgkin and Burkitt lymphoma [134]. Furthermore,
iR-155 has been shown experimentally to be a bona fide oncogene,
as !ectopic expression accelerates tumor development [64,135].
ome miRNAs appear to be deregulated in cancers much more
frequently than others. These miRNAs may play key roles during

tumorigenesis. For example, the miR-17-92 cluster is frequently
amplified in lymphoma and plays a role as an oncogene, possibly
by targeting apoptotic factors activated in response to MYC
overexpression [64,83]. The miR-17-92 cluster was also found
overexpressed in lung cancer, especially in small-cell lung cancer
[136].

7. ’berrant action of microRNAs with no alteration of their
expression levels

The function of protein-coding genes is altered by point muta-
tions, which either transform proto-oncogenes to oncogenes or
abrogate functions of tumor-suppressor genes. In theory, the same
mechanism of activation/inactivation may apply to miRNAs. How-
ever, mutation in mature miRNA seed sequence seems to be a rare
eventii88,137-139|.

In contrast, sequence variation in miRNA target sites may occur
and play a role in cancer. In silico analyses of expressed sequence
tag and single nucleotide polymorphism (SNP) databases indicate
different allele frequencies of miRNA-binding sites in cancers ver-
sus normal tissues [140]. Several experiments have shown that
SNPs in miRNA target sites affect miRNA interactionf#ith its target
mRNA and are implicated in disease [138,141-143].An interesting
exemplification of this mechanism is found in let-7 and its target
oncogene, HMGA2 [144,145]. Chromosomal rearrangements at
the HMGA2 locus in several tumors separate the open reading
frame [ 104] from the 3'UTR that contains let-7 target sites. As a re-
sult, HMGA2 escapes from let-7 regulation, is overexpressed, and
promotes tumorigenesis [144].

An alternative splicing event may result in a different 3'UTR
that displays different miRNA recognition sites, as exemplified in
the targeting of Tropomyosin-related kinase C by miR-9, —125a,
and —125b. One mRNA isoform encodes a truncated ORF that is
dominant negative to the intact protein. In this isoform, the 3'UTR
contains the target sites of these miRNAs. In contrast, the target
sites are absent in another isoform encoding the intact ORF; only
the former isoform was repressed by the miRNAs [146]. Although
the stop codon !usually located in the last exon, generation of dif-
ferent 3'UTRs Dy multiple polyadenylation sites or alternative
splicing has been known to occur in a small but significant fraction
of genes [ 147]. Thus, variation of the 3'UTR and of attended miRNA
target sites is expected to be a mechanism for oncogene activation
or tumor-suppressor inactivation.

Recently, Kedde and colleagues demonstrated that the expres-
sion of dead end 1 protein (Dnd1), an evolutionary conserved
RNA-binding protein, counteracts the function of several miRNAs
in human cells and in primordial germ cells of zebrafish by binding
mRNAs and prohibiting miRNAs from associating with their target
sites. These effects of Dnd1 are mediated through uridine-rich re-
gi present in the miRNA-targeted mRNAs [148].

ecently, Steitz and colleagues [23] reported that miRNAs acti-
vate the translation of the target mRNA in cells arrested at the Gof
G, stage. In addition to the aberrant miRNA expression, the switch
from repression to activation should be considered in studying the
role of miRNAs in differentiation and tumorigenesis, as the same
miRNA may exert opposite effects in quiescent cells and proliferat-
ing cancer cells in a given tissue.

8. Oncogenic or tumor-suppressive microRNAs

Having in mind their broad effects, miRNAs have been proposed
to function as oncogenes or tumor-suppressor genes given their
inhibition of a variety of tumor-suppressive and oncogenic mRNAs,
respectively [85,149]. In particular, three distinct mechanisms
have been proposed. First, oncogenic miRNAs can undergo a gain
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of function in tumors due to genomic amplifications. This has been
clearly demonstrated for the miR-1~92 cluster, whose amplification
inB-cell lymphomas promotes their development [64,150,151 . Fur-
thermore, tumor-suppressive miRNAs could undergo loss of func-
tion in tumors due to chromosomal rearrangements, deletions or
mutations. This has been shown for several miRNAs, including the
let-7 family, whose expression can impair tumorigenesis through
inhibition of oncogenes like the RAS family and HMGA2 [152,153].
In particular, let-7 family members are in sites of frequent deletion
inhuman tumors, and their processingis inhibited by the oncogenic
Lin28 proteins|[73,74,154]. Finally, and on the side of the mRNA tar-
gets, oncogenes can acquire mutations to remove miRNA-binding
sites in tumors. This has been described for HMGA2, whose translo-
cation promotes lipoma development by releasing the transcript
from let-7-mediated tumor-suppression [145].

There are a number of miRNAs that are overexpressed in one
type of cancer and down-regulated in another. For example, miR-
205 is up-regulated in lung [122], bladder [155], and pancreatic
cancers [156]. Contrarily, it is significantly down-regulated in pros-
tate [157], breast cancers [158] and esophageal squamous cell car-
cinoma [159].

As mentioned before, Eiring et al. has shown that miR-328 can
act as a decoy by binding to a regulatory RNA binding protein
(hnRNP E2) and preventing it from blocking translation of mRNAs.
Thus, miR-328 has a dual role in the regulation of gene expression
[25]. These findings are intriguing because a miRNA-mediated reg-
ulatory function associated with RNA binding proteins has never
been described before.

Therefore, it should it is noteworthy that some miRNAs can
have dual oncogenic and tumor-suppressive roles in cancer
depending on the cell type and pattern of gene expression [160].

9. Regulation of cell cycle factors by microRNAs in human
cancer

ell cycle regulators frequently act as oncogenes or tumor
suppressors. The cell cycle inhibitor p27(Kip1) is one of the best
Eamples. P27(Kip1) is a tumor suppressor that when mutated
edisposes cells to tumorigenesis upon exposure to carcinogens
[161]. P27(Kip1) binds to Cdk2-cyclin E and prevents G,-to-S tran-
sition [162]. P27(Kip1) mRNA transcript is a direct target of miR-
221 and -222 in glioblastomas [ 163,164 ] and prostate cancer cells
[165]. In these types of cancer, p27(Kip1) 8%pression is inversely
correlated with that of miR-221 @hd -222. MiR-221 and -222 are
overexpressed in other cancers, suggesting th' they play a role
in a wide range of tumors [166]. MiRNAs also regulate other cell
cycle proteins including Cdk6, Cdc25A, Cend2 (cyclin D2) [167],
Cdk4 [168], a Rb-family protein [101], and p180 subunit of DNA
polymerase o [62]. It has been described perturbation of the cell
cycle by overexpression or inhibition of some miRNAs [3,62,163,
168-171]. Nonetheless, it has not been reported alterations of miR-
NAs expression during normal cell cycle.

The retinoblastoma (pRB) pathway s one of the major cell cycle
pathways and is altered in almost every human cancer [172]. pRB
is a transcriptionally represses cell cycle transcription factors of the
E2F family resulting in a proliferative arrest. This is relieved by pRB
phosphorylation by the cyclin-dependent kinases (CDKs), com-
plexes formed by a cyclin and a kinase that trigger progression
throughout the different phases of the cell cycle. CDKs are, in addi-
tion, negatively regulated by cell cycle inhibitors of the INK4 (such
as p16™42) or Cip/Kip families (such as p21°*! or p27¥P!) [172].
PRB itself is abnormally down-regulated by the overexpression of
the miR-106a in different human cancers [173]. P130/RBL2, an-
other member of the pRB family, is controlled by the miR-290 clus-
ter, which regulates the expression of DNA methyltransferases in a

p130-dependent manner affecting telomere-length homeostasis
[174]. P130/RBL2 is also targeted by the oncogenic miR-17-92 clus-
ter resulting in a clonal expansion required for the proper differen-
tiation of adipocytes [175]. The positive regulators of the cell cycle,
cyclins and CDKs, are also targeted by miRNAs. The protein levels
of cyclin D1/CCND1 and CDK6 are down-regulated by miR-34a
inducing significant G1 cell cycle arrest in the A549 cell line
[176]. The miR-34 family of miRNAs are directly induced by p53
and participate in DNA damage response and oncogenic stress in-
duced by this tumor suppressor [177]. miR-34 is also able to pro-
mote cell cycle arrest by decreasing CDK4 and Cyclin E/[CCNE2
protein levels [168]. CDK6 is also targeted by miR-124 or miR-
137, two miRNAs silenced by hypermethylation in tumor cells of
different origins [90,178]. Most of these miRNAs function as tumor
suppressors in several malignancies and it is conceivable that they
exert their function through multiple targets. Thus, the let-7 family
may control multiple regulators of cell proliferation such as cyclin
A2, cyclin B1, cyclin E2 and CDK8 among other cell cycle targets
[167]. Some other oncogenic miRNAs may exert their function
through the inhibition of cell cycle inhibitors such as members of
the INK4 or Cip/Kip families. p16'™4 a CDK4/6 specific inhibitor,
is controlled by miR-24, a miRNA that is down-regulated during
replicative senescence [179]. p21°P!, a p53-target of the Cip/Kip
family of cell cycle inhibitors, is a direct target of miR-106b, which
is overexpressed in multiple tumor types and plays a critical role in
cell proliferation by regulating the G,-to-S cell cycle transition
[180]. The p27%! protein, a second member of the Cip/Kip family
with a relevant role as tumor suppressor in human cancer, is
mostly controlled at the post-transcriptional level [163]. miR-221
and miR-222 can function as oncogenes in human tumors by bind-
ing to target sites in the 3'UTR of p27%"! inhibiting its translation
[163]. The physiological up-regulation of miR-221 and miR-222
coordinates competency for initiation of S phase with growth fac-
tor signaling pathways that stimulate cell proliferation [181].

Therefore, disruption of miRNAs expression that target cell cy-
cle proteins, could ultimately lead to the progression of the malig-
nant phenotype in human tumors.

10. MicroRNAs, p53 and programmed cell death

P53, a well known !anscription factor, is described as the
guardian of the genome owing to its critical roleE regulation of
the cell cycle and apoptosis upon DNA damage. P53 is the most
extensively studied tumor suppressor and its importance is under-
scored by mutation of p53 in almost 50% of human cancers.

MIiRNA profiling after p53 induction pointed at miR-34a, -34b

d -34c as the most up-regulated miRNAs [168,169,182,183].

ese miRNAs are induced after genotoxic stress in a p53-depen-
dent manner in vitro and in vivo [168,183]. Transcription of pri-
miRNAs -34a, -34b and -34c from both loci is directly activated
by p53. These miRNAs promot@cell cycle arrest, apoptosis, and
senescence [168,169,182-185]. These effects are explained by the
repression of several direct targets of the miR-34s such as Bcl-2
[185], Cdk4, and Hepatocyte growth factor receptor [168]. In addition
to the miR-34s, other miRNAs may be important in the p53 path-
way. MiR-30c, -103, -26a, -107, and -182 were clearly induced, al-
beit less robustly, upon DNA damage in a p53-dependent manner
[182]. miR-26a expression was also shown to be dependent on
p53 [186]. MiR-504 acts as a negative regulator of human p53
through its direct binding to two sites in the p53 3’ untranslated
region [187].

The tumor suppressor protein p53 was also described to modu-
late miRNA processing through association with p68 and Drosha
[188]. Under conditions of DNA damage, several miRNAs, including
miR-143 and miR-16, are post-transcriptionally up-regulated [188].
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Co-immunoprecipitation studies indicate that p53 is present in a
complex with both Drosha and p68, and addition of p53 to in vitro
processing assays could enhance Drosha processing [188]. Interest-
ingly, several p53 mutants that have been previously linked to onco-
genic progression suppressed miRNA expression [188]. These
results indicate that the association of p68/Drosha with accessory
factors, such as p53, may be particularly important for the rapid
induction of mil!\s in response to extracellular stimuli.

Apoptosis or programmed cell death is an active process con-
trolled by a gene expression program that varies depending on the
biological context. Because a balance between proliferation and
apoptosis is essential fl tissue homeostasis and proper differentia-
tion, deregulation of dpoptosis may give rise to cancer. MiRNAs
participate in tumorigenesis by directly targeting antiapoptotic
genes. Representative examples include the repression of antiapo-
ptotic genes Mcl-1 and Bcl2 by miR-29b [97] and by miR-34s [185],
-15a, and -16 [125], respectively. The loss of these miRNAs due to
mutation of p53 or deletion of chromosome 13q14 leads to an in-
crease in the antiapoptotic gene expressiorfind persistence of tumor
cells that would have normally undergone ptosis. Itisvery likely
that miRNAs target other genes in the apoptotic pathway, as trans-
fection or expression of a number of miRNAs is associated with
apoptosis [189-191].

11. The role of miRNAs in 'wasion and metastasis

Features of malignant tumors, distinct from benign tumors, in-
clude invasion and metastasis. Malignant tumors are fatal, mostly
due to their capacity to invade neighboring tissues and metastasize
through the bloodstream to distant organs. About 90% of cancer-re-
lated deaths are caused by the development of malignant tumors
distant from the primary site lesions as a result of metastasis
[192]. Recent studies have suggested an important role for miRNAs
in metastasis formation. We can classify these miRNAs in two main
categories: metastatic inducers and metastatic suppressors. Meta-
static inducers include miR-10b, miR-21, miR-127, miR-199a, miR-
210, miR-373 and miR-520c. Mir-10b down-regulated in a number
of cancers [128,193], is unexpectedly foundio be up-regulated in
about 50% of metastatic breast cancers. Ectopic expression of
miR-10b promotes invasion, intravasﬁon and metastasis in other-
wise non-invasive or non-metastatic Breast cancer cell lines [130].
Moreover, miR-10b directly targets HOXD 10, whose reduction in-
duces the expression of a well-characterized pro-metastatic gene,
RhoC [130]. Further, this miRNAs have the ability to promote
migration, invasion, and metastasis of non-invasive breast cancer
cells in vitro and in vivo [130].

Several miRNAs seem to be metastatic suppressors: let-7 fam-
ily, miR-100, miR-126, miR-218, miR-335. Reduced levels of miR-
126 and miR-335 were found in breast cancer characterized by
poor metastatic-free survival [194], while significantly decreased
expression of miR-let7c, miR-100 and miR-218 are differentially
expressed between metastatic prostate cafiler from high grade
localized prostate cancer [195]. Moreover ectopic expression of
miR-125 impairs cell motility and invasion in a breast cancer cell
line [196], and reduction of global miRNA expression enhances
migration of cells [3].

Interestingly, of the metastatic inducers miR|
a miRNA with established oncogenic properties. @iR81, one of the
most frequently up-regulated miRNAs in cancer, Promotes cell
motility and invasion by directly targeting PTEN (phosphatase and
tensin homolog), a tumor suppressor known to inhibit cell invasion
by blocking the expression of several matrix metalloproteases
[197]. Another pathway was recently reported in colorectal can-
cers, where miR-21 promotes invasion, intravasation, and metasta-
sis by downregulating Pdcd4 [198]. Alternatively, the majority of

only miR-21 is

metastatic suppressor miRNAs found to date are also considered
tumor suppressor miRNAs. These observations suggest that either
metastatic inducers miRNAs uniquely regulate key sets of genes in-
volved in invasion and migration, or that these inducers miRNAs
may also have other, yet unknown, tumorigenic properties.

12. The role of microRNAs in angiogenesis

Angiogenesis is the process by which new blood vessels form
through the growth of existing blood vessels, and involves the pro-
liferation, sprouting, and migration of endothelial cells, followed
by pruning and remodeling of the vascular network. Major promot-
ers of angiogenesis include vascular endothelial growth factor
(VEGF) and basic fibroblast growth factor (bFGF), which activate
several downstream pathways, including the mitogen-activated
protein kinase (MAPK) and phosphinositide 3-kinase (PI3 K) path-
ways, to regulate cell motility, proliferation, and survival [199].
MicroRNAs are emerging as important modulators of angiogenesis.
Additionally, dynamic changes in microRNA expression in re-
sponse to growth factor stimulation [200,201] [202] or hypoxia
[203] imply that microRNAs are an integral component of the
antgenic program.

e stimulation of neovascularization by c-Myc involves a
down-regulation of antiangiogenic factor Tsp-1. C-Myc represses
Tsp-1 and a related protein, Connective tissue growth factor (CTGF)
by activating the miR-17-92 cluster [204]. Tsp-1 and CTGF appear
to be direct targets of miR-19 and -18, respectively. In fact, ectopic
expression of the miR-17-92 cluster is sufficient for promoting
angi@@enesis [204]. A recent observation indicates that other miR-
,As, iR-378 and -27a, may play a role in angiogenesis [171,205].

iral miRNAs may also play a role in angiogenesis, as Tsp-1 has
been shown to be a direct target of KSHV miRNAs [206]. Further-
more, miR-126 promotes angiogenesis by repressing spred1 and
pik3r2, which normally inhibit VEGF signaling [207,208].

Thus, targeting the expression of microRNAs may be a novel
therapeutic approach for diseases involving excess or insufficient
vasculature.

13. MicroRNAs as diagnostic tools

Many miRNAs are uniquely and differentially expressed in cer-
tain tissues as compared @lith normal adjacent tissues. These small
RNA molecules can have @lagnostic or prognostic value, as miRNA
expression profiles reflect tumor origin, stage, and other patholog-
ical factors. For example, the expression of miRNA let-7 is down-
regulated in lung cancer but not in other cancers, such as breast
or colon cancer [121,127,209]. MiRNA expression profiles indicate
that miRNAs are a better indicator for distinguishing cancer tissues
from normal tissues, and can successfully classify even poitly dif-
ferentiated tumors [2]. These observations suggest that MiRNAs
can be used as!omarkers and diagnostic tools for cancer detec-
tion. Moreover MiRNAs can function as accurate molecular mark-
ers also because they are relatively stable and resistant to RNase
degradation-probably due to their small size [210-212]. They are
highly stable in tissue sections and in blood. Thus their relatively
easy and reproducible detection makes them good candidates for
bic.arkers of cancer.

iRNAs can be isolated and quantified from formalin-fixed par-
affin-embedded (FFPE) specimens. qRT-PCR and microarray data
were reliable and reproducibly obtained from FFPE samples that
had been routinely processed and stored frozen for 10 years. The
data from FFPE san‘,es are consistent with those from frozen sam-
ples [213,214]. The development of qRT-PCR methods has improved
the sensitivity of miRNA detection down to a few nanograms of total
RNA. This amount can easily be obtained by fine-needle aspiration
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biopsies (FNABs); in fact there has been a report of successful miRNA
measurement by qRT-PCR on FNAB samples [215].

MIRNA markers that could be used for cancer diagnosis are
becoming available. For example, miR-196a is high in pancreatic
ductal adenocarcinoma (PDAC) but low in normal tissues and
chronic pancreatitif§§215]. miR-217 exhibits the opposite expres-
sion pattern [215]. Thus, the ratio between miR-196a to miR-217,
calculated by qRT-PCR measurement of the two miRNAs from a
tiny amount of total RNA, indicates whether the samples contains
PDAC [216]. Once reliable indicator miRNAs are chosen, they will
likely yield easy and accurate tools for cancer diagnosis.

14. MicroRNAs as cancer therapeutic tools

For the past two and half decades it has been though that cancer
is caused by genetic and/or epigenetic alterations in protein-coding
oncogenes and tumor suppressor genes. These findings have in-
formed the development of novel (targeted) therapies that are
based on specific genetic alterations involved in cancer pathogen-
esis.!onetheless, with the advent of miRNAs era it was discovered
that @ number of miRNAs affect the growth of cancer cells in vitro
and in vivo when overexpressed or inhibited. Because miRNAs
function as oncogenes or tumor suppressors, it might be possible
to regulate miRNA expression and/or use artificial miRNAs to reg-
ula® cancer formation.

verexpression or inhibition of miRNAs can be achieved in sev-
eral ways. Synthetic miRNA mimics include siRNA-like oligoribonu-
cleotide duplex [217] and chemically modified oligoribonucleotide
[218]. Conversely, miRNAs can be inhibited by various modified
antisense oligonucleotides such as 2’-O-methyl antisense oligonu-

Table 1
MicroRNA dysregulated in human cancer.
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cleotide, antagomirs, and so on.!s the first successful tool for knock-
down of a NA in vivo, antagomirs (e.g. LNA-modified antisense
sequences) are of special interest [219]. Antagomirs appear to be
delivered to all tissues (except brain) after tail vein injections into
mif8 [220].
nthetic oligonucleotides are effective in vivo for most a cou-
ple of weeks, as has been demonstrated by experiments involving
cancer cells engrafted in mice [221] and tail vein injection to mice
[220]. To circumvent this limitation, miRNAs can be stably ex-
!'essed through transcription of hairpin RNA from plasmid vector.
ecently, artificial expression of a miRNA target sequence was
shown to inhibit the miRNA function, presumably by titrating
the miRNA away from endogenous targets [222,223]. Thus, it
should be possible to apply such competitive inhibitors for long-
term sequestration of a miRNA.

More recently, the Weinberg group has described another
in vivo approach to modulating miRNA function with possible
therapeutic implications. Their approach involved the use of a
sponge vector [1], a vector expressing miRNA target sites design
to saturate and endogenous miRNA and preventing it from regulat-
ing their natural targets [224]. In this case, miR-9 was identified as
a pro-metastatic miRNA in breast cancer [1], and the miRNA
sponge-mediated suppression of miR-9 in the highly metastatic
4T1 mouse mammary tumors cells reduced lung metastasis by
50%, although no effect was observed in the onset of the primary
turfibr.

me chemical compounds alter the expression of a group of
miRNAs [117]; therefore it may be possible to screen for drugs that
could s@ift the miRNAome in a cancer cell toward that of a normal
tissue. modulating multiple miRNAs simultaneously, such a
miRNAome modifying approach may be much more effective for

Human miRNA Deregulation in cancer

let-7 family (various)

miR-10b (2q31.1, intergenic)
miR-15a, miR-16-1 cluster (13q14.3,
intron 4 non-coding RNA DLEU2).

Down-regulated in lung, breast, gastric, ovary, prostate and colon cancer
Overexpression in AML

Down-regulated in breast cancer. Overexpressed in metastatic breast cancer
Down-regulated in CLL, DLBCL, multiple myeloma, pituitary adenoma,
prostate and pancreatic cancer

Up-regulated in nasopharyngeal carcinoma

miR-17, miR-18a, miR-19a, miR-20a,
miR-19b-1, miR-17-92 cluster
(13g31.3, intron 3 C130rf25)

LOH at miR-17-92 locus in melanoma, ovarian and breast cancer

Overexpression in lung and colon cancer, lymphoma, multiple myeloma, medulloblastoma

miR-26a (3p22.2)

Down-regulation in hepatocellular carcinomas

Up-regulation in breast cancer

miR-106b-93-25 cluster (7q22.1)
miR-21 (17q23.1, 3'UTR TMEM49)

Overexpression in gastric, colon and prostate cancer, neuroblastoma and multiple myeloma
Overexpression in glioblastoma, breast, lung, prostate, colon, stomach, esophageal,

and cervical cancer, uterine leiomyosarcoma, DLBCL, head and neck cancer

miR-29 family (various)

Down-regulation in CLL, colon, breast, and lung cancer and cholangiocarcinomas

Up-regulation in breast cancer

miR-34 family (1p36.23, 11q23.1, intergenic

Down-regulated in pancreatic cancer and Burkitt's lymphoma.

Hypermethylation of miR-34b, ¢ in colon cancer

miR-101 (1p31.3, 9p24.1)
miR-122a (18q21.31 intergenic)
miR-124a family (various)
miR-125a, miR-125b (various)

Down-regulation in prostate cancer, hepatocellular carcinoma, and bladder cancer
Down-regulation in hepatocellular carcinoma

Hypermethylation in colon, breast, gastric and lung cancer, leukemia and lymphoma
Down-regulation in glioblastoma, breast, prostate and ovarian cancer

Up-regulation in myelodisplastic syndrome and AML

miR-127 (14q32, RTL1 exon)
miR-143, miR-145 cluster (intergenic 5q32)
miR-155 (21q21.3, exon 3 ncRNA BIC)

Hypermethylation in tumor cell lines
Down-regulated in colon adenomaj/carcinoma, in breast, lung, and cervical cancer, in B-cell malignancies
Overexpressed in pediatric Burkitt's lymphoma, Hodgkin’s lymphoma, primary mediastinal lymphoma,

DLBCL, breast, lung, colon, pancreatic cancer

miR-181 family (various)

miR-221, miR-222 cluster (Xp11.3, intergenic)
miR-200 family (various)

miR-205 (1q32.2)

Overexpressed in breast, pancreas, and prostate cancer

Overexpressed in CLL, thyroid papillary carcinoma, glioblastoma. Down-regulated in AML
Down-regulated in clear-cell carcinoma, metastatic breast cancer

Overexpression in NSCLC

Down-regulated in prostate cancer

miR-372, miR-373 cluster (19q13.41, intergenic)

Overexpression in testicular cancer

Antitumorigenic;  Oncogenic.
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therapy than strategies that aim to regulate a single miRNA. Recon-
stitution of down-regulated miRNAs offers the theoretical edge of
correcting the malignant defect by inducing small changes in miR-
NA gene dosage to a homeostatic level achieving substantive
phenotypic alterations that counteract malignant transformation.
Few studies of fluoroquinolones have demonstrated a significant
growth inhibition of some tumor cells including translational cell
carcinoma of bladder, colorectal carcinoma and prostate cancer
cells [225-227]. One such drug is enoxacin that belongs to the fam-
ily of synthetic antibacterial compounds based on a fluoroquino-
lone skeleton [228]. This small-molecule enhances RNAi induced
by either shRNAs or siRNA duplexes [229].

MiRNAs also affect the drug sensitivity of a cell [197,221].

pression or inhibition of a miRNA can therefore be combined
with treatment of a drug or other citotoxic therapy. One example
is miR-21 inhibition together with a secreted form of tumor necro-
sis factor-related apoptosis-inducing ligand, which results in a
complete eradication of glioblastoma cells [230].

Collectively, preliminary results suggest that miRNAs could be
useful for cancer therapy. However, there is still a significant gap
between basic research on miRNAs and clinical application. Exten-
sive preclinical and translational research is necessary to increase
the efficacy and minimize the side effects of miRNAs-based
therapy.

15. Conclusions

In summary miRNAs play critical roles in the tumorigenic process
and altered miRNA expression is associated with the process of car-
cinogenesis and culminates in the development of cancer. Examples
of miRNAs involved in human cancer are shown in Table 1.

MIiRNAs profiles are significantly altered in numerous cancers
affecting the cells transcriptome. Nonetheless, these small RNAs
are also subjected to regulation by many cancer-associated pro-
teins such as p53 and c-Myc. Their expression patterns depend
upon tumor origin, histotype, stage and grade. MiRNAs influence
treatment responses and curability of tumors.

The complexity of the miRNA network and therefore, the possi-
ble alterations that they may suffer in the malignant process, is fur-
ther intensified by the discovery of miRNA functions that fall
outside their classic range. For example, there is evidence of miR-
NA-mediated increases in protein translation [23], nuclear import
of miRNAs with distinctive hexanucleotide terminal motifs [76]
and the secretion of miRNAs [231,232]. Furthermore, an alternative
processing pathways has been uncovered in Drosophila melanogas-
ter and C. elegans that bypasses DROSHA and instead uses a splicing
technique to generate miRNA precursors from short intronic se-
quences (mirtons) [233,234,38]. Most importantly, we should be
aware that miRNAs have also opened the door for the study of
other non-coding RNAs in cancer, such as transcribed-ultracon-
served regions (T-UCRs), that are also impaired in human tumors
[235] and many times associated with promoter CpG island methyl-
ation silencing [236]. From a traslational standpoint, profiles of pro-
moter hypermethylated miRNAs loci have started to show value as
metastasis predictors [237]. In the future, miRNAs, and other non-
coding RNAs, may serve as excellent biomarkers for early detection
of tumors, and individual tailoring of therapeutic strategies.
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