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Recombination spot identification
Based on gapped k-mers

Rong Wang, Yong Xu & Bin Liu

Recombination is crucial for biological evolution, which provides many new combinations of genetic
diversity. Accurate identification of recombination spots is useful for DNA function study. To improve
the prediction accuracy, researchers have proposed several computational methods for recombination
spotidentification. The k-mer feature is one of the most useful features for modeling the properties and
function of DNA sequences. However, it suffers from the inherent limitation. If the value of word length
kis large, the occurrences of k-mers are closed to a binary variable, with a few k-mers present once and
most k-mers are absent. This usually causes the sparse problem and reduces the classification accuracy.
To solve this problem, we add gaps into k-mer and introduce a new feature called gapped k-mer (GKM)
for identification of recombination spots. By using this feature, we present a new predictor called
SVM-GKM, which combines the gapped k-mers and Support Vector Machine (SVM) for recombination
spotidentification. Experimental results on a widely used benchmark dataset show that SVM-GKM
outperforms other highly related predictors. Therefore, SVM-GKM would be a powerful predictor for
computational genomics.
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Abstract

Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA
and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve
longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary
variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features
becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce
alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-
mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data
structure for computing the kernel matrix. We show that compared to our original kmer-5VM and alternative approaches,
our gkm-5VM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved
accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-
SVM on human ENCODE ChlP-seq datasets, and further demonstrate the general utility of our method using a Naive-Bayes
classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence

classification problem.
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Highly similar sections are highlighted. While the 2014 PLOS Comp Bio paper is cited, the 2016 Scientific Reports article
incorrectly claims “we... introduce a new feature called gapped k-mer” and “we present a new predictor called (SVM-GKM),”
which were introduced and developed in the 2014 PLOS Comp Bio paper as gkm-SVM. The “SVM-GKM” method is identical
to gkm-SVM, and uses our gkm-SVM software. The authors have copied text, rearranged the acronym, rearranged some
variable names (introducing some errors in the process), and run our software on a different dataset. The claim of this paper
was not “we applied gkm-SVM to recombination”, the fraudulent claim was “we present a new predictor called (SVM-GKM).”
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Gapped k-mer. With the increase of word length k, the method based on k-mers could cause the sparse
problem. This is because many k-mers are not appeared in one DNA sequence, and thus its feature vector may
contain a large amount of zero values. To overcome this disadvantage caused by k-mers, Ghandi et al.** propose a
new feature named gapped k-mer method (GKM), which uses k-mers with gaps. Experimental results show that
this feature is able to obviously improve the performance for enhancer identification. Motivated by its success, in
this study, we apply the GKM to the field of recombination hotspots identification, and propose a computational
predictor called SVM-GKM, which uses a full set of k-mers with gaps as features, instead of comparing the whole
sequence pairs. It treats gaps as mismatches. For most of the predictors, it is critical to calculate the similarity
between two elements in the feature space. The similarity score of two sequences is calculated by the kernel func-
tion. Therefore, in this section, we will describe how to calculate the kernel function of SVM-GKM.

First, each training sample is represented as a series of k-mers, where k is the length of subsequence. The key
to calculate the GKM kernel matrix is to compute the number of mismatches between each pair of sequences for
all pairs of k-mers. Here, we define a variable m to stand for is the length of matches, so the length of gaps is k—m.
Then feature vector f* of a given sequence S can be defined as

fs = [y1s’yzs’ T )'As-r] (2)

whereyjS is the length of the i— th gapped k-mer in the sequence S, M — (k) . p™ stands for the number of all

m
gapped k-mers, and b is the alphabet size. For DNA sequence, b = 4. Then the kernel function between two
sequences S, and S, can be defined as

SIS
K(S,S,) = <fnfe>
N AT 3)

Since the number of all possible gapped k-mers grows extremely rapidly as m increases, direct calculation of
Eq. 3 is almost intractable®. Thus, the inner product in Eq. 3 is computed by the following equation:

k
Sif% > =5'N (S, S,)h
<f f = 2 n(l Z)H (4)

where n(n < k— m) is the number of mismatches between two k-mers x; and x;. x, is from S, and x; is from
85, N, (81, §;) is the number of pairs of k-mers with n mismatches in sequences S, and S,, h,, is the corresponding
coefhicient. h,, is defined as follows:

hn:[C;l” k—n>=m
0  otherwise (5)
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Calculation of sequence similarity score using gapped k-
mers

To overcome the limitations associated with using k-mers as
features described above, we introduce a new method called gkim-
SVM, which uses as features a full set of k-mers with gaps. At the
heart of most classilication methods is a distance or similarity
score, often called a kernel function in the SVM context, which
calculates the similarity between any two elements in the chosen
feature space. Therefore, in this section, we first describe the
feature set and how to efliciently calculate the similarity score.
This new feature set, called gapped k-mers, is characterized by two
parameters; (1) 1, the whole word length including gaps, and (2) £,
the number ol informative, or non-gapped, positions in cach word.
The number of gaps is thus [ — k.

We first deline a leature vector [or a given sequence S to be

= '1;‘15 - ._1";_,] ., where M is the number of all gapped k-
mers (e for DNA sequences, M = ( K 4%, and ¥ are the

counts of the corresponding gapped k-mers appeared in
the sequence S, We then deline a similarity score, or a
kernel function, between two sequences, §; and 8s, as the
normalized inner re wuet ol the :'t:l't'l'n‘pllnding feature vectors as

[ollows:

e o 51 152 ;
K(SuS)=nr 2 (1)
] [lrSl{lrs2
where (/%1 /%25 Z;‘il (J‘f’ 'II‘;\-:], and ||| \;""<!'SJ'S>_

Since the number ol all possible gapped k-mers grows extremely
rapidly as k increases, direct caleulation of Equation (1) quickly
becomes intractable. T'o implement gapped k-mers as features, it is
nl'l'l'.\hil]'l\ 10 OVercome Ihl\ Nl'l'illll.\' i.'\'.‘-lll', I]) (I"['i\ i]]g‘ a new

equation for K(8,. 84) that does not involve the computation of all

Therefore, we can rewrite Equation (2) by grouping all the f-mer
| ¥ groupimg
pairs of the same number of mismatches together as follows:

!
SISy =Y No(S1,S2)hu(m) (

m=0

tad

where N(S1. So) is the number of pairs of [-mers with m
mismatches, and fig(m) is the corresponding coeflicient. We refer
o N,u(S), So) as the mismatch profile of Sy and Ss. Since each l-mer

- . . l—m
pair with m mismatches contributes to ( k common gapped

k-mers, the coellicient fiy(m), denoted in short by h,, is given by:

{—m ’ Sk
hmz k — . (4)

0 otherwise

These equations are all identical, with only variable name and notation changes: b=4, k2>, n=>m, m—2>Kk, Cin= .

Copying errors in red: “counts” was changed to “length,” which would make this method fail, if it had actually been i

plemented.
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In order to reduce the error caused by corresponding coefficients, the following equation is used to get h,
when calculating the mismatch for two sequences

M M M
ZEDIDIPIL¢ RS VIR (ol
n=0 =0 t=0 ©)

where #, is the mismatch number that k-mer x, contains, #,is the mismatch number that k-mer x, contains, and
t is the mismatches number, which exists at the k — n mismatch positions for both x; and x,. The remaining mis-
matches r=n, — t — (n — n, — t) are among the the n mismatch positions for k-mer x,.

SI=AAAAT =0
S=ATTTT
S:=AATA
=1
d=2
d=3

Figure 1. An example to show the tree structure of k-mer counting. This example only contains two
alphabets, A and T. We use k= 3 and three sequences §,= AAAAT, S,= ATTTT, and S;= AATA to build k-mer
tree. Each node t; at depth d represents a sequence of length d, denoted by s(t;), which is determined by the path
from the root of the tree to t;. At depth d= 3, for node t;, s(t;) = ‘AAA; §; contains two counts of this k-mer, S,
and S; do not contain this k-mer. For node t, s(t;) = ‘AAT’, §; and S; both contain one count, and S, does not
contain this k-mer. Compared t; with #;, the paths to these two nodes only contain one mismatch.
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used in Equation (3). To calculate the mismatch string kernel value

for two sequences we replace fig(m) in Equation (3) by h}f":_'jf"“'“'h[m,\:

TR— here when retyping they
> ii(!—m)m ”,(m)w 2},( m—r ) (9) introduced an error in
’ ' the definition of r.

my=0my=01=0 !’ m—l—=r
andr=m+
mo—m—2f. Given two l-mers x; and xo where x; and x, differ in

exactly m places, the term inside the summations counts the

where b is the alphabet size (b= 4 for DNA sequences)

number of all possible [-mers that exactly differ x; in m, places and
Xo in myg places t of which fall in the common [-m bases of x; and
Xo. (See Figure 89). So the result of the summation is the number

S,: AAACCC Depth d=0
S, AAAAA
S, ACC

changed C=> T
4=2 algorithm is
identical

SeqlD | S, | S; S, S| S; S,

Count | 1 3 1 1 1 1

DFS(node, depth, {{node, mismatches)})
DFS(t, ., 0, {(t,. O)})
DFS(t, . 1, {(t,, 0), (t;, 1)}
DFS(ty, 2, {{t,, 0), (t,, 1), (t;, 2)})
DFS(t; , 3, {(ts. 0). (t7. 1). (t. 2). (t. 3)})
DFS(t{ 1 3! {(tﬁl 1)r (t.r- O)- (tm 1)! (tg, 2)})

DFS(t, . 1, {(t, 1), (1. O)})

Figure 5. Fast computation of mismatch profiles using &-mer tree structure. As an example, we use | =3 and three sequences 5, = AAACCC,
5= AAAAA, and 5;=ACC to build the k-mer tree. The leaves (nodes at depth d=/= 3) comespond to 3-mers AAA, AAC, ACC, and CCC. The sequence
ID and the number of times each 3-mer appeared in each sequence are stored for each leaf. Each node t; at depth d represents a sequence of length
d, denoted by s(t), which is determined by the path from the root of the tree to f. For example, s{t;) = C and s(t,) = AC. DFS is started at the root node,
1. When visiting each node 1, at depth d, we compute the list of all the nodes 1, at depth d for which sir) and sif) have at most M., mismatches. We
also compute the number of mismatches between s(t) and s(t). When reaching a leaf, we increment the corresponding mismatch profile Ny (S, 5) for
each pair of sequences §; in that leaf and §; in the list.
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Tree structure. In this paper, a tree structure is employed to count mismatches® so as to improve the calcu-
lation efficiency of GKM.

The tree is generated by training samples and we construct it by adding a path for every k-mer. Assume that
s(t;) stands for the path from the root to node ¢; with depth d. d means that the corresponding sub-sequence has a
length of d. For a tree, its maximum depth is &, i.e. the length of the k-mer. Therefore, for a terminal leaf node of
the tree, the leaf node represents a k-mer. A terminal leaf node can also hold the list of training sequence labels,
which contains the information of appeared k-mers and the number of these k-mers in each sequence. We use
depth-first search (DES)** order to search the tree and obtain the mismatch profile. Based on the method in¥,
we store the list of pointers to all nodes t, at depth d and also store the number of mismatches between two paths
s(f;) and s(z;). Differing from this method, our method only needs to store the values of the terminal leaf nodes
and does not need to store the information of all nodes. Thus, at the end of one DES traversal of the tree, the mis-
match profiles for all pairs of sequences are completely determined. Figure 1 gives an example of a mismatch tree
with k= 3. The tree is generated by sequences S;, S,, and S;. We can see that for node f, s(fs) = ‘AAA. Sequence
S, contains two counts of substring s(ty), but sequence S, and sequence S; do not contain this substring. For our
experiments, we used the gkm-SVM software v1.3** as the implementation of the gapped k-mer and tree struc-
ture, which is available at http://www.beerlab.org/gkmsvm/.

Cross-Validation. K-fold cross-validation is a widely used method for evaluating the performance of a com-
putational predictor®”*8. In this article, following previous studies*’, we use 5-fold cross-validation to evaluate
the performance of various predictors. First we segment the dataset into five sections, This dataset contains both
recombination hotspots and recombination coldspots. Then we get four segments of both hotspots and clodspots
as training dataset, and the remain segment as testing dataset. We repeat this operation till all five segments have
been already used as testing dataset. Finally, we calculate the mean of the prediction accuracy as our final results.

The tree structure is identical and the software is identical.
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Gkm-kernel with k-mer tree data structure

As depicted in Figure 5, we use a k-mer tree to hold all the /-
mers in the collection of all of the sCquences., We construct the tree
by adding a path for every [-mer observed in a training sequence.
Each node {; at depth d represents a sub-sequence of length d,
denoted by s(f;), which is determined by the path from the root of
the tee to the node f. Each terminal leal node of the wee
represents an [-mer, and holds the list of training sequence labels in
which that [-mer appeared and the number of times that [-mer
appeared in each sequence. As an example, Figure 5 shows the
tree that stores all the substrings of length / = 3 in three sequences
§; =AAACCCG, S>=ACC, and 83 = AAAAA. Then, to evaluate
the mismatch profile we traverse the wree in a depth-first search
(DFS) [35] order. In contrast to the mismatch tree used m Rel. [8],
here for each node ¢, at depth d, we store the list of pointers to all
the nodes £; at depth d for which s(t;) and s(f;) have at most [ —
number of mismatches. We also store the number of mismatches
between s(t;) and s(f;). Similar to the mismatch wree [8], we do not
need to store these values for all the nodes in the tree, but we
compute them recursively as we traverse the tree. When reaching
a leal node, we inerement the corresponding mismatch profile
N,(8;, §;) for each pair of sequences §; in that leal’ node’s sequence
list, and all the §;'s in the List of sequences in the pointer list for that
leal” node. At the end of one DFS wraversal of the tree, the
mismatch profiles for all pairs of sequences are completely
determined.

Cross validation

Following standard five-fold cross validation procedures, we
divided the positive and negative sets into five segments, lefi one
segment out as the test set and used the other four segments for
training. We repeated for all of the five segments and calculated
the mean and standard errvor of the prediction accuracy on the test
set elements.
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Performance comparison between SVM-GKM and kmer-SVM.  The k-mer is a widely used feature
considering the local sequence order information along the DNA sequences. GKM is an improvement of k-mer
by introducing the gaps into k-mers. For comparison, a predictor called kmer-SVM is constructed based on
k-mers. The kmer-SVM can be viewed as a special case of GKM-SVM without gaps. Therefore, the implementa-
tion of kmer-SVM is the same as that of SVM-GKM except that the gap number 7 is set as 0, and the tree structure
is also employed so as to reduce the computational cost. The performance of these two methods on the bench-
mark dataset with different parameters is shown in Fig. 2.

As shown in Fig. 2, SVM-GKM consistently outperforms kmer-SVM, especially for lager word length values
(k> 9). We can also see that parameter k does not have significant impact on the performance of SVM-GKM, and
SVM-GKM achieves its highest accuracy (86.57%) when k= 13. In contrast, kmer-SVM achieves its highest
accuracy (82.31%) when k= 10 and then its performance decreases significantly. This is because when k is larger
than 10, the dimension of the feature vectors is very large and many values are zeros, leading to extremely sparse
problem. For example, when k= 13, the dimension of the feature vectors generated by kmer-GKM is

%0 g T T T
- B -
85 - - — ]
-
—~ L]

80 -| —-" .
2
< 754 e

—a— SVM-GKM
70 - ®  kmer-SVM 4
65 T T T
9 12 15

word length &

Figure 2. The influence of parameter k on the performance of two predictors. Two predictors, one is SVM-
GKM, the other is kmer-SVM. We consider the word length k from 8 to 15, and choose the mismatch length
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Gapped k-mer SVM classifier outperforms k-mer SVM
classifier

We compared the performance of gkm-SVM and kmer-SVM
on the C'TCF data set for a range of oligomer lengths by varying
cither & (for kmer-SVM) or [ (for gkm-SVM) from 6 to 20, We
fixed the parameter & =6 for gkm-SVM. We then quantified the
classification performance of each by calculatng test-set AUC with
standard five-fold cross validation (CV) (see Methods). Figure TA
shows a SUmImary ol the :'tnnp;n‘ismls. As allli:‘ipal(‘.d, gknl-S\-'X[
performs consistently better than kmer-SVM for all lengths. More
significantly, while kmer-SVM sulfers severely from overfitting
when k is greater than 10, gkm-SVM is virtually unaflected by {. In
[act, gkm-SVM achieves the best result (AUC = 0.967) when [ = 14
and k=06, which is significantly better than the kmer-SVM
(AUC=0.912 when k=10); the best ROC curve is shown in

A B
=
. _: - '_':‘; =
.I__ -
w _| _ T X
Q ° T, O I'-I -
- = T .
A — CTCF <« EP300 T =
—  gkm-5VM, full ——  gkm-5VM, full
g — ----  gkm-SVM, my,, =3 — ----  gkm-SVM, my, =3
kmer-SVM ) kmer-SVM “T-T
v n -
= | [ | [ | [ = | [ | I | |
6 8 10 12 14 16 18 20 § 10 12 14 16 18 20

Word length

Word length

m= 7 for SVM-GKM predictor. SVM-GKM achieves the highest result when k= 13, kmer-SVM obtains the
highest result when k= 10.

Figure 1. gkm-SVM outperforms kmer-SVM over a wide range of k-mer length. Both gkm-SVM and kmer-SVM were trained on (A) CTCF
bound and (B) EP300 bound genomic regions using different word lengths (k for kmer-SVM and [ for gkm-SVYM). The parameter k for gkm-SVM was
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